
Modeling Guidelines for High-Integrity
Systems
Block and Configuration Parameter
Considerations

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Modeling Guidelines for High-Integrity Systems

© COPYRIGHT 2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2009 Online only New for version 1.0 (Release 2009b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Introduction

1
Motivation . 1-2

Block-Specific Considerations

2
Math Operations . 2-2

Ports & Subsystems . 2-14

Signal Routing . 2-30

Logic and Bit Operations . 2-40

Configuration Parameter Considerations

3
Solver . 3-2

Diagnostics . 3-8

Optimizations . 3-15

iii

iv Contents

1

Introduction

1 Introduction

Motivation
The MathWorks™ intends this document for engineers developing models
and generating code for high-integrity systems using Model-Based Design
with MathWorks™ products. This document describes creating Simulink®

models that are complete, unambiguous, statically deterministic, robust,
and verifiable. The document focus is on model settings, block usage, and
block parameters that impact simulation behavior or code generated by the
Real-Time Workshop® Embedded Coder™ product.

These guidelines do not assume that you use a particular safety or certification
standard. The guidelines reference some safety standards where applicable,
including DO-178B, IEC 61508, and MISRA C®.

You can use the Model Advisor to support adhering to these guidelines. Each
guideline lists the checks that are applicable to that guideline, or to parts
of that guideline.

This document does not address model style or development processes. For
more information about creating models in a way that improves consistency,
clarity, and readability, see the MathWorks Automotive Advisory Board
Control Algorithm Modeling Guidelines Using MATLAB®, Simulink, and
Stateflow® (Version 2.0). Development process guidance and additional
information for specific standards is available with the IEC Certification Kit
(for IEC 61508) and DO Qualification Kit (for DO-178B) products.

Disclaimer While adhering to the recommendations in this document will
reduce the risk that an error is introduced during development and not be
detected, it is not a guarantee that the system being developed will be safe.
Conversely, if some of the recommendations in this document are not followed,
it does not mean that the system being developed will be unsafe.

1-2

http://www.mathworks.com/industries/aerospace/standards/do-178b.html
http://www.mathworks.com/industries/auto/standards/iec-61508.html
http://www.mathworks.com/industries/aerospace/standards/misra-c.html

2

Block-Specific
Considerations

• “Math Operations” on page 2-2

• “Ports & Subsystems” on page 2-14

• “Signal Routing” on page 2-30

• “Logic and Bit Operations” on page 2-40

2 Block-Specific Considerations

Math Operations

hisl_0001: Usage of Abs Block

hisl_0002: Usage of Math Function
Blocks (Remainder and Reciprocal)

hisl_0003: Usage of Math Function
Blocks (Square Root)

hisl_0004: Usage of Math Function
Blocks (Natural Logarithm and Base
10 Logarithm)

hisl_0005: Usage of Product Blocks

2-2

hisl_0001: Usage of Abs Block

ID: Title hisl_0001: Usage of Abs block

Priority Strongly recommended

Prerequisites Not applicable

Description To support the robustness of the generated code when using Abs blocks:

• Avoid Boolean and unsigned integer data types as inputs to the
Abs block.

• In the Abs block parameter dialog box, select Saturate on integer
overflow.

Note The Abs block does not support Boolean data types. Specifying
an unsigned input data type might optimize the Abs block out of the
generated code. This results in an untraceable block.

For signed data types, Simulink does not represent the absolute value
of the most negative value. . When you select Saturate on integer
overflow, the absolute value of the data type saturates to the most
positive representable value. When you clear Saturate on integer
overflow, the absolute value of the most negative value represented by
the data type has no effect.

Rationale • Code Generation

• Verification and Validation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.4 (3) ‘Defensive programming’;
IEC 61508-3, Table A.3 (2) ‘Strongly typed programming language’;
IEC 61508-3, Table B.8 (3) ‘Control Flow Analysis’

2-3

hisl_0001: Usage of Abs Block

• DO-178B, Section 6.4.4.3c ‘Structural Coverage Analysis Resolution
(Dead Code)’

• MISRA-C:2004, Rule 14.1;
MISRA-C:2004, Rule 21.1

Model
Advisor
Checks

• By Task > Modeling Standards for DO-178B > “Check for
proper usage of blocks that compute absolute values”

• By Task > Modeling Standards for IEC-61508 > “Check usage
of Simulink constructs”

Example

Correct

Incorrect

2-4

hisl_0002: Usage of Math Function Blocks (Remainder
and Reciprocal)

ID: Title hisl_0002: Usage of Math Function blocks (remainder and reciprocal)

Priority Strongly recommended

Prerequisites Not applicable

Description To support the robustness of the generated code, when using Math
Function blocks with remainder after division (rem) or array reciprocal
(reciprocal) functions:

• Protect the input of the reciprocal function from going to zero.

• Protect the second input of the rem function from going to zero.

Note When using the array reciprocal or remainder after division
functions, you might get a divide by zero operation, resulting in an
infinite (Inf) output. To avoid overflows, protect the corresponding
inputs from going to zero.

Rationale • Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• MISRA-C:2004, Rule 21.1

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.4 (3) ‘Defensive programming’

• DO-178B, Section 6.4.2.2 ‘Robustness Test Cases’
DO-178B, Section 6.4.3 ‘Requirements-Based Testing Methods’

Model
Advisor
Checks

By Task > Modeling Standards for DO-178B > “Check for proper
usage of Math blocks”

2-5

hisl_0002: Usage of Math Function Blocks (Remainder
and Reciprocal)

Example The following is a basic example of protection from zero division. When
the input signal oscillates around zero, the output exhibits a large
change in value. The MathWorks recommends further protection
against the large change in value.

2-6

hisl_0003: Usage of Math Function Blocks (Square
Root)

ID: Title hisl_0003: Usage of Math Function blocks (square root)

Priority Strongly recommended

Prerequisites Not applicable

Description To support the robustness of the generated code, when using Math
Function blocks with the square root (sqrt) function parameter, do
one of the following:

• Account for complex numbers as the output.

• Account for negative values as the block output.

• Protect the input from going negative.

Note For negative inputs, the square root function takes the absolute
value of the input and performs the square root operation. The square
root function sets the sign of the output to negative, which might lead
to undesirable results in the generated code.

Rationale • Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.4 (3) ‘Defensive programming’

• DO-178B, Section 6.4.2.2a ‘Robustness Test Cases’

Model
Advisor
Checks

Not applicable

2-7

hisl_0003: Usage of Math Function Blocks (Square Root)

Example

2-8

hisl_0004: Usage of Math Function Blocks (Natural
Logarithm and Base 10 Logarithm)

ID: Title hisl_0004: Usage of Math Function blocks (natural logarithm and base
10 logarithm)

Priority Strongly recommended

Prerequisites Not applicable

Description To support the robustness of the generated code, when using Math
Function blocks with natural logarithm (log) or base 10 logarithm
(log10) function parameters, do one of the following:

• Protect the input from going negative.

• Protect the input from equaling zero.

• Account for complex numbers as the output value.

Note If you set the output data type to complex, the natural logarithm
and base 10 logarithm functions output complex values for negative
input values. If you set the output data type to real, the functions output
NAN for negative numbers, and minus infinity (-inf) for zero values.

Rationale • Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.4 (3) ‘Defensive programming’

• DO-178B, Section 6.4.2.2a ‘Robustness Test Cases’

Model
Advisor
Checks

By Task > Modeling Standards for IEC-61508 > “Check usage
of Simulink constructs”

2-9

hisl_0004: Usage of Math Function Blocks (Natural
Logarithm and Base 10 Logarithm)

Example

You can protect against:

• Negative numbers using an Abs block.

• Zero values using a combination of the MinMax block and a Constant
block, with Constant value set to eps (epsilon).

The following example displays the resulting output for input values
ranging from -100 to 100.

2-10

hisl_0004: Usage of Math Function Blocks (Natural
Logarithm and Base 10 Logarithm)

2-11

hisl_0005: Usage of Product Blocks

ID: Title hisl_0005: Usage of Product blocks

Priority Strongly recommended

Prerequisites Not applicable

Description To support the robustness of the generated code, when using Product
blocks with divisor inputs:

• In Element-wise(.*) mode, protect all divisor inputs from going
to zero.

• In Matrix(*)mode, protect all divisor inputs from becoming singular
input matrices.

• In the Configuration Parameters dialog box, set Diagnostics > Data
Validity > Signals > Division by singular matrix to error.

Note When using Product blocks for element-wise divisions, you might
get a divide by zero, resulting in a NaN output. To avoid overflows,
protect all divisor inputs from going to zero.

When using Product blocks to compute the inverse of a matrix, or a
matrix divide, you might get a divide by a singular matrix. This division
results in a NaN output. To avoid overflows, protect all divisor inputs
from becoming singular input matrices.

During simulation, while the software inverts one of the inputs of a
Product block that is in matrix multiplication mode, the Division by
singular matrix diagnostic can detect a singular matrix.

Rationale • Simulation

• Code Generation

• High Integrity Systems

2-12

hisl_0005: Usage of Product Blocks

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.4 (3) ‘Defensive programming’

• DO-178B, Section 6.4.2.2 ‘Robustness Test Cases’
DO-178B, Section 6.4.3 ‘Requirements-Based Testing Methods’

• MISRA-C:2004, Rule 21.1

Model
Advisor
Checks

By Task > Modeling Standards for DO-178B > “Check
safety-related diagnostic settings for signal data”

Example Not applicable

2-13

hisl_0005: Usage of Product Blocks

Ports & Subsystems

hisl_0006: Usage of While
Iterator Blocks

hisl_0007: Usage of While
Iterator Subsystems

hisl_0008: Usage of For Iterator
Blocks

hisl_0009: Usage of For Iterator
Subsystem Blocks

hisl_0010: Usage of If Blocks and
If Action Subsystem Blocks

hisl_0011: Usage of Switch Case
Blocks and Action Subsystem
Blocks

hisl_0012: Usage of Triggered
Subsystems

hisl_0012_b: Usage of
Function-Call Subsystems

2-14

hisl_0006: Usage of While Iterator Blocks

ID: Title hisl_0006: Usage of While Iterator blocks

Priority Strongly recommended

Prerequisites Not applicable

Description To support statistically deterministic generated code when using While
Iterator blocks, in the While Iterator block parameters dialog box:

• SetMaximum number of iterations to a positive integer value.

• Consider selecting Show iteration number port to observe the
iteration value during simulation.

Note When you use While Iterator subsystems, The MathWorks
recommends setting the maximum number of iterations. If you use
an unlimited number of iterations, you might get infinite loops in the
generated code, which leads to execution-time overruns.

To observe the iteration value during simulation and determine
whether the loop reaches the maximum number of iterations, select
Show iteration number port of the While Iterator block. If the loop
reaches the maximum number of iterations, verify whether the output
values of the While Iterator block are correct.

Rationale • Simulation

• Code Generation

• Verification and Validation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’
IEC 61508-3, Table A.4 (3) ‘Defensive programming’

2-15

hisl_0006: Usage of While Iterator Blocks

• DO-178B, Section 6.3.1e ‘Review and Analyses of the High-Level
Requirements: Conformance to standards’
DO-178B, Section 6.3.2e ‘Review and Analyses of the Low-Level
Requirements: Conformance to standards’

• MISRA-C:2004, Rule 21.1

Model
Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > “Check usage
of Simulink constructs”

• By Task > Modeling Standards for DO-178B > “Check for
proper usage of While Iterator blocks”

Example Not applicable

2-16

hisl_0007: Usage of While Iterator Subsystems

ID: Title hisl_0007: Usage of While Iterator subsystems

Priority Strongly recommended

Prerequisites Not applicable

Description To support unambiguous behavior when you use While Iterator
subsystems:

• Use inherited (-1) or constant (inf) sample times for all blocks
within the subsystems.

• Avoid using sample time-dependent blocks, such as integrators,
filters, and transfer functions, within the subsystems.

Rationale • Simulation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’
IEC 61508-3, Table A.4 (3) ‘Defensive programming’

• DO-178B, Section 6.4.3c ‘Requirements-Based Testing Methods:
Requirements-Based Low-Level Testing’

• MISRA-C:2004, Rule 21.1

Model
Advisor
Checks

• By Task > Modeling Standards for IEC-61508 > “Check usage
of Simulink constructs”

• By Task > Modeling Standards for DO-178B > “Check for
proper usage of While Iterator blocks”

2-17

hisl_0007: Usage of While Iterator Subsystems

Example For iterative subsystems, the value delta T is nonzero for the first
iteration only. For subsequent iterations, the value is zero.

In the following example, in the output of the Sum block calculation
that uses the unit delay, the Sum block calculation does not require
delta T. The output of the Discrete-Time Integrator block displays the
effect of the zero delta T value.

2-18

hisl_0007: Usage of While Iterator Subsystems

2-19

hisl_0008: Usage of For Iterator Blocks

ID: Title hisl_0008: Usage of For Iterator blocks

Priority Strongly recommended

Prerequisites Not applicable

Description To support statistically deterministic generated code, when using For
Iterator blocks, do one of the following:

• In the For Iterator block parameters dialog box, set Iteration limit
source to internal.

• If Iteration limit source must be external, use a block that has a
constant value, such as a Width, Probe, or Constant block.

• In the For Iterator block parameters dialog box, clear Set next i
(iteration variable) externally.

• In the For Iterator block parameters dialog box, consider selecting
Show iteration variable to observe the iteration value during
simulation.

Note When you use the For Iterator block, you might get a variable or
unlimited number of iterations. This results in unpredictable execution
times and, in the case of external iteration variables, infinite loops in the
generated code, leading to execution-time overruns. Avoid these issues
by feeding the loop control variable with fixed (nonvariable) values.

Rationale • Simulation

• Verification and Validation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

2-20

hisl_0008: Usage of For Iterator Blocks

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.4 (3) ‘Defensive programming’

• DO-178B, Section 6.3.1e ‘Review and Analyses of the High-Level
Requirements: Conformance to standards’
DO-178B, Section 6.3.2e ‘Review and Analyses of the Low-Level
Requirements: Conformance to standards’

• MISRA-C:2004, Rule 13.6

Model
Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > “Check usage
of Simulink constructs”

• By Task > Modeling Standards for DO-178B > “Check for
proper usage of For Iterator blocks”

Example Not applicable

2-21

hisl_0009: Usage of For Iterator Subsystem Blocks

ID: Title hisl_0009: Usage of For Iterator Subsystem blocks

Priority Strongly recommended

Prerequisites Not applicable

Description To support unambiguous behavior, when using For Iterator Subsystem
blocks:

• Use inherited (-1) or constant (inf) sample times for all the blocks
within the subsystems.

• Avoid using sample time-dependent blocks, such as integrators,
filters, and transfer functions, within the subsystems.

Rationale • Code Generation

• Safety-related Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.4 (3) ‘Defensive programming’

• DO-178B, Section 6.4.2.2d ‘Robustness Test Cases: For for loops’

• MISRA-C:2004, Rule 13.6

Model
Advisor
Checks

• By Task > Modeling Standards for IEC-61508 > “Check usage
of Simulink constructs”

• By Task > Modeling Standards for DO-178B > “Check for
proper usage of For Iterator blocks”

Example See the “Example” on page 2-18 in hisl_0007: Usage of While
Iterator Subsystems.

2-22

hisl_0010: Usage of If Blocks and If Action Subsystem
Blocks

ID: Title hisl_0010: Usage of If blocks and If Action Subsystem blocks

Priority Strongly recommended

Prerequisites hisl_0016: Usage of Blocks That Compute Relational
Operators

Description To support verifiable generated code, when using If blocks with
nonempty Elseif expressions:

• In the block dialog box, select Show else condition.

• Connect the outports of the If block to an If Action Subsystem block.

Note The combination of If and If Action Subsystem blocks enable
conditional execution based on input conditions. When there is only an
if branch, you do not need to include an else branch.

Rationale • Verification and Validation

• Code Generation

• Safety-related Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.4 (3) ‘Defensive programming’

• MISRA-C:2004, Rule 14.10

See Also:

• na_0012: Use of Switch vs. If-Then-Else Action Subsystem in the
Simulink® Verification and Validation™ documentation.

2-23

hisl_0010: Usage of If Blocks and If Action Subsystem
Blocks

Model
Advisor
Checks

Not applicable

Example

Correct: Elseif with Else

Incorrect: No Else Path

2-24

hisl_0010: Usage of If Blocks and If Action Subsystem
Blocks

Correct: Only an If, no Else required

2-25

hisl_0011: Usage of Switch Case Blocks and Action
Subsystem Blocks

ID: Title hisl_0011: Usage of Switch Case blocks and Action Subsystem blocks

Priority Strongly recommended

Prerequisites hisl_0016: Usage of Blocks That Compute Relational
Operators

Description To support verifiable generated code, when using Switch Case blocks:

• In the Switch Case block dialog box, select Show default case.

• Connect the outports of the Switch Case block to an If Action
Subsystem block.

• Use an integer data type for the inputs to Switch Case blocks.

Note The combination of Switch Case and If Action Subsystem blocks
enable conditional execution based on input conditions. Provide a
default path of execution in the form of a “Default” block. For an
example of a “Default” block, see the “Example” on page 2-27.

Rationale • Verification and Validation

• Code Generation

• Safety-related Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.4 (3) ‘Defensive programming’

• MISRA-C:2004, Rule 15.3

See Also:

2-26

hisl_0011: Usage of Switch Case Blocks and Action
Subsystem Blocks

• db_0115: Simulink patterns for case constructs in the Simulink
Verification and Validation documentation.

Model
Advisor
Checks

Not applicable

Example The following graphic displays an example of providing a default path
of execution using a “Default” block.

2-27

hisl_0012: Usage of Triggered Subsystems

ID: Title hisl_0012: Usage of triggered subsystems

Priority Strongly recommended

Prerequisites Not applicable

Description To support unambiguous behavior, when using triggered subsystems:

• Use inherited (-1) sample times for all blocks, except Constant
blocks, within the systems. Constant blocks may use infinite (inf)
sample time.

• Avoid using sample time-dependent blocks, such as integrators,
filters, and transfer functions, within the subsystems.

Rationale • Simulation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.4 (3) ‘Defensive programming’

Model
Advisor
Checks

Not applicable

Example Not applicable

2-28

hisl_0012_b: Usage of Function-Call Subsystems

ID: Title hisl_0012_b: Usage of function-call subsystems

Priority Strongly recommended

Prerequisites Not applicable

Description To support unambiguous behavior, when using function-call
subsystems:

• Use inherited (-1) sample times for all blocks, except Constant
blocks, within the systems. Constant blocks may use infinite (inf)
sample time.

• Avoid using sample time-dependent blocks, such as integrators,
filters, and transfer functions, within the subsystems.

Rationale • Simulation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.4 (3) ‘Defensive programming’

Model
Advisor
Checks

Not applicable

Example Not applicable

2-29

hisl_0012_b: Usage of Function-Call Subsystems

Signal Routing

hisl_0013: Usage of Data Store
Blocks

hisl_0015: Usage of Merge Blocks

2-30

hisl_0013: Usage of Data Store Blocks

ID: Title hisl_0013: Usage of data store blocks

Priority Strongly recommended

Prerequisites Not applicable

Description To support statistically deterministic behavior across different sample
times or models, when using data store blocks, including Data Store
Memory, Data Store Read, and Data Store Write blocks:

• In the Configuration Parameters dialog box, on the
Diagnostics > Data Validity pane, set the following diagnostics in
the Data Store Memory Block box to error:

- Detect read before write

- Detect write after read

- Detect write after write

- Multitask data store

- Duplicate data store names

• Avoid data store reads and writes that occur across model and atomic
subsystem boundaries. The sorting algorithm in Simulink does
not take into account data coupling between models and atomic
subsystems.

• Avoid using data stores to write and read data at different rates,
because different rates can result in inconsistent exchanges of data.
To provide deterministic data coupling in multirate systems, use
Rate Transition blocks before Data Store Write blocks, or after Data
Store Read blocks.

Note Using data store blocks can have significant effects on your
software verification effort. Models and subsystems that use only
inports and outports to pass data are clean, deterministic, and verifiable
interfaces in the generated code.

2-31

hisl_0013: Usage of Data Store Blocks

Rationale • Verification and Validation

• Code Generation

• Safety-related Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’

• IEC 61508-3, Table A.4 (3) ‘Defensive programming’

• DO-178B, Section 6.3.3b ‘Review and Analyses of the Software
Architecture: Consistency’

Model
Advisor
Checks

By Task > Modeling Standards for DO-178B > “Check
safety-related diagnostic settings for data store memory”

2-32

hisl_0013: Usage of Data Store Blocks

Example To provide deterministic data coupling in multirate systems, use Rate
Transition blocks before Data Store Write blocks, or after Data Store
Read blocks.

• For fast-to-slow transitions:

Set the rate of the slow sample time on either the Rate Transition
block or the Data Store Write block.

Do not place the Rate Transition block after the Data Store Read
block.

• For slow-to-fast transitions:

If the Rate Transition block is after the Data Store Read block,
specify the slow rate on the Data Store Read block.

If the Rate Transition block is before the Data Store Write block, use
the inherited sample time for all blocks.

2-33

hisl_0013: Usage of Data Store Blocks

2-34

hisl_0015: Usage of Merge Blocks

ID: Title hisl_0015: Usage of Merge blocks

Priority Strongly recommended

Prerequisites Not applicable

Description To support unambiguous behavior from Merge blocks:

• Use Merge blocks only with conditionally executed subsystems.

• Specify the execution of the conditionally executed subsystems such
that only one subsystem executes during a time step in all cases.

• Clear Allow unequal port widths.

Note Simulink combines the inputs of the Merge block into a single
output. The output value at any time is equal to the most recently
computed output of the blocks that drive the Merge block. Therefore,
the Merge block output is dependent upon the execution order of the
input computations.

To provide predictable behavior of the Merge block output, you must
have mutual exclusion between the conditionally executed subsystems
feeding a Merge block. If the inputs are not mutually exclusive,
Simulink uses the last input port.

Rationale • Verification and Validation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.4 (3) ‘Defensive programming’

2-35

hisl_0015: Usage of Merge Blocks

• DO-178B, Section 6.3.3b ‘Reviews and Analyses of the Software
Architecture: Consistency’

Model
Advisor
Checks

Not applicable

2-36

hisl_0015: Usage of Merge Blocks

Example

Correct

Incorrect

To ensure predictability:

2-37

hisl_0015: Usage of Merge Blocks

• Use Enabled Subsystem inputs with enable logic that provide
exclusive execution of the subsystems.

• Enable Action Subsystem inputs from the same If-Else block that
provides exclusive execution of the subsystems.

• Enable Action Subsystem inputs from the same Switch-Case block
that provide exclusive execution of the subsystems.

2-38

hisl_0015: Usage of Merge Blocks

2-39

hisl_0015: Usage of Merge Blocks

Logic and Bit Operations

hisl_0016: Usage of Blocks That
Compute Relational Operators

hisl_0017: Usage of Blocks That
Compute Relational Operators (2)

hisl_0018: Usage of Logical
Operator Blocks

hisl_0019: Usage of Bitwise
Operator Blocks

2-40

hisl_0016: Usage of Blocks That Compute Relational
Operators

ID: Title hisl_0016: Usage of blocks that compute relational operators

Priority Strongly recommended

Prerequisites Not applicable

Description To support the robustness of the operations when using blocks that
compute relational operators, including Relational Operator, Compare
To Constant, Compare to Zero, and Detect Change blocks:

• Avoid comparisons using the == or ~= operators on floating-point
data types.

Note Due to floating-point precision issues, do not test floating-point
expressions for equality (==) or inequality (~=). The software might not
evaluate the comparison of floating-point expressions correctly.

When the model contains a block computing a relational operator with
the == or ~= operators, the inputs to the block must not be single, double,
or any custom storage class that is a floating-point type. Change the
data type of the input signals, or rework the model to eliminate using
the == or ~= operators within blocks that compute relational operators.

Rationale • Verification and Validation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’ ;
IEC 61508-3, Table A.4 (3) ‘Defensive programming’

• DO-178B, Section 6.3.1g ‘Algorithms are accurate”
DO-178B, Section 6.3.2g ‘Algorithms are accurate’

• MISRA-C:2004, Rule 13.3

2-41

hisl_0016: Usage of Blocks That Compute Relational
Operators

See also:

• hisl_0017: Usage of Blocks That Compute Relational
Operators (2)

Model
Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > “Check usage
of Simulink constructs”

• By Task > Modeling Standards for DO-178B > “Check for
proper usage of Relational Operator blocks”

2-42

hisl_0016: Usage of Blocks That Compute Relational
Operators

Example Positive Pattern: To test whether two floating-point variables or
expressions are equal, compare the difference of the two variables
against a threshold that takes into account the floating-point relative
accuracy (eps) and the magnitude of the numbers.

The following pattern shows how to test two double-precision input
signals, In1 and In2, for equality.

2-43

hisl_0017: Usage of Blocks That Compute Relational
Operators (2)

ID: Title hisl_0017: Usage of blocks that compute relational operators (2)

Priority Strongly recommended

Prerequisites Not applicable

Description To support unambiguous behavior in the generated code when using
blocks that compute relational operators, including Relational Operator,
Compare To Constant, Compare to Zero, and Detect Change blocks:

• On the Signal Attributes pane of the block that computes a
relational operator, set the Output data type to Boolean.

Rationale • Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.3 (2) ‘Strongly typed programming language’

• MISRA-C:2004, Rule 12.6

See also:

• hisl_0016: Usage of Blocks That Compute Relational
Operators

Model
Advisor
Checks

By Task > Modeling Standards for IEC 61508 > “Check usage
of Simulink constructs”

Example Not applicable

2-44

hisl_0018: Usage of Logical Operator Blocks

ID: Title hisl_0018: Usage of Logical Operator blocks

Priority Strongly recommended

Prerequisites hisl_0045: Configuration Parameters > Optimization >
Implement logic signals as Boolean data (vs. double)

Description To support unambiguous behavior in the generated code when using
the Logical Operator block

• In the Logical Operator block parameters dialog box, on the Signal
Attributes pane, set the Output data type to Boolean.

Rationale • Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.3 (2) ‘Strongly typed programming language’

• MISRA-C:2004, Rule 12.6

Model
Advisor
Checks

By Task > Modeling Standards for DO-178B > “Check
safety-related optimization settings”

Example Not applicable

2-45

hisl_0019: Usage of Bitwise Operator Blocks

ID: Title hisl_0019: Usage of Bitwise Operator blocks

Priority Strongly Recommended

Prerequisites Not applicable

Description To support unambiguous behavior when using Bitwise Operator blocks:

• Avoid signed integer data types as inputs to the Bitwise Operator
block.

• Choose an output data type that represents zero exactly.

Note Bitwise operations on signed integers are not meaningful. If a
shift operation moves the sign bit into a numeric bit, or a numeric bit
into the sign bit, you can see unpredictable and unwanted behavior.

Rationale • Readability

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Table A.3 (2) ‘Strongly typed programming language’

• MISRA-C:2004, Rule 12.7

Model
Advisor
Checks

Not applicable

Example Not applicable

2-46

3

Configuration Parameter
Considerations

• “Solver” on page 3-2

• “Diagnostics” on page 3-8

• “Optimizations” on page 3-15

3 Configuration Parameter Considerations

Solver

hisl_0040: Configuration
Parameters > Solver > Simulation
time

hisl_0041: Configuration
Parameters > Solver > Solver
options

hisl_0042: Configuration
Parameters > Solver > Tasking
and sample time options

3-2

hisl_0040: Configuration Parameters > Solver >
Simulation time

ID: Title hisl_0040: Configuration Parameters > Solver > Simulation time

Priority Strongly recommended

Prerequisites Not applicable

Description To support specified models, set the Configuration Parameters
pertaining to the simulation time:

• On the Configuration Parameters > Solver pane, set Start time
to 0.0.

• On the Configuration Parameters > Solver pane, set Stop time
to any positive value that is less than the value of Application
lifespan (days).

Note Simulink allows nonzero start times for simulation, however,
production code generation using the Real-Time Workshop Embedded
Coder product requires a zero start time.

By default, Simulink sets Application lifespan (days) to inf. If you
do not change this setting, any positive value for Stop time is valid and
this setting has no effect on generated code.

You specify Stop time using seconds, whereas Application lifespan
(days) is in days.

Rationale • Simulation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’

3-3

hisl_0040: Configuration Parameters > Solver >
Simulation time

For more information, see the Solver Pane section of the Simulink
documentation

See also:

• hisl_0048: Configuration Parameters > Optimization >
Application lifespan (days)

Model
Advisor
Checks

Not applicable

Example Not applicable

3-4

hisl_0041: Configuration Parameters > Solver > Solver
options

ID: Title hisl_0041: Configuration Parameters > Solver > Solver options

Priority Strongly recommended

Prerequisites Not applicable

Description To support specified models, set the configuration parameters that
pertain to solver options, on the Configuration Parameters > Solver
pane, set:

• Type to Fixed-step.

• Solver to discrete (no continuous states).

Note Generating code for production using the Real-Time Workshop
Embedded Coder product requires a fixed-step, discrete solver.

Rationale • Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’

For more information, see “Solver Pane” in the Simulink documentation.

Model
Advisor
Checks

Not applicable

Example Not applicable

3-5

hisl_0042: Configuration Parameters > Solver > Tasking
and sample time options

ID: Title hisl_0042: Configuration Parameters > Solver > Tasking and sample
time options

Priority Recommended

Prerequisites Not applicable

Description To support specified models, set configuration parameters pertaining
to tasking and sample time options. On the Configuration
Parameters > Solver pane:

• Set Periodic sample time constraint to Specified and assign
appropriate values to Sample time properties.

Caution

If you use a referenced model as a reusable function, set Periodic
sample time constraint to Ensure sample time independent.

• Set Tasking mode for periodic sample times to SingleTasking
or MultiTasking.

• Clear Automatically handle data transfers between tasks.

Note Selecting the Automatically handle data transfers between
tasks check box might result in inserting rate transition code without
a corresponding model construct. This might impede establishing full
traceability or showing that unintended functions are not introduced.

You can select or clear the Higher priority value indicates higher
task priority check box . Selecting this check box determines whether
the priority for Sample time properties uses the lowest values as
highest priority, or the highest values as highest priority.

3-6

hisl_0042: Configuration Parameters > Solver >
Tasking and sample time options

Rationale • Verification and Validation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;
IEC 61508-3, Clauses 7.4.7.2, 7.4.8.3, and 7.7.2.8 which require to
demonstrate that no unintended functionality has been introduced

• DO-178B, Section 6.3.4e ‘Source code is traceable to low-level
requirements’

For more information, see “Solver Pane” in the Simulink documentation.

Model
Advisor
Checks

Not applicable

Example Not applicable

3-7

hisl_0042: Configuration Parameters > Solver > Tasking
and sample time options

Diagnostics

hisl_0043: Configuration
Parameters > Diagnostics >
Solver

hisl_0044: Configuration
Parameters > Diagnostics >
Sample Time

3-8

hisl_0043: Configuration Parameters > Diagnostics
> Solver

ID: Title hisl_0043: Configuration Parameters > Diagnostics > Solver

Priority Strongly recommended

Prerequisites Not applicable

Description To support specified models, set the diagnostic settings pertaining to
the solver:

• In the Configuration Parameters dialog box, on the
Diagnostics > Solver pane, set Algebraic loop to error.

• In the Configuration Parameters dialog box, on the
Diagnostics > Solver pane, set Minimize algebraic loop to
error.

• If you are using block priorities, in the Configuration Parameters
dialog box, on the Diagnostics > Solver pane, set Block priority
violation to error.

• In the Configuration Parameters dialog box, on the
Diagnostics > Solver pane, set Unspecified inheritability of
sample times to error.

• In the Configuration Parameters dialog box, on the
Diagnostics > Solver pane, set Automatic solver parameter
selection to error.

• In the Configuration Parameters dialog box, on the
Diagnostics > Solver pane, set State name clash to warning.

3-9

hisl_0043: Configuration Parameters > Diagnostics >
Solver

Note The Algebraic loop diagnostic parameter detects automatic
breakage of algebraic loops. The Minimize algebraic loop diagnostic
parameter detects automatic breakage of algebraic loops for Model
blocks and atomic subsystems. Breaking algebraic loops can affect the
predictability of the order of block execution.

The Block priority violation diagnostic parameter detects potential
conflicts in the block execution order that can affect the predictability of
the order of block execution.

The Unspecified inheritability of sample times diagnostic
parameter detects whether a model contains an S-function that is
not explicitly set to inherit sample time. Correct these S-function
parameters to prevent unpredictable behavior.

The Automatic solver parameter selection diagnostic parameter
detects whether Simulink automatically modifies the solver, step size,
or simulation stop time. Such changes can affect the operation of
generated code. Explicitly set these parameters to known values.

The State name clash diagnostics parameter detects when you use a
name for more than one state in the model. Make state names within a
model unique.

Enabling the diagnostics pertaining to the solver provides information
to detect violations of the previous guidelines.

In the Configuration Parameters dialog box, on the
Diagnostics > Solver pane, you can set the following
diagnostic parameters to any value:

• Min step size violation

• Sample hit time adjusting

• Consecutive zero crossings violation

• Solver data inconsistency

• Extraneous discrete derivative signals

3-10

hisl_0043: Configuration Parameters > Diagnostics
> Solver

Rationale • Simulation

• Code Generation

• Verification and Validation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;

• DO-178B, 6.3.3e ‘Software architecture conforms to standards’

For more information, see:

• “Diagnostics Pane: Solver” in the Simulink documentation.

• jc_0021: Model diagnostic settings in the Simulink Verification and
Validation documentation.

Model
Advisor
Checks

• By Task > Modeling Standards for DO-178B > “Check
safety-related model referencing settings”

• By Task > Modeling Standards for DO-178B > “Check
safety-related diagnostic settings for solvers”

Example Not applicable

3-11

hisl_0044: Configuration Parameters > Diagnostics >
Sample Time

ID: Title hisl_0044: Configuration Parameters > Diagnostics > Sample Time

Priority Strongly recommended

Prerequisites Not applicable

Description To support specified models, set the diagnostic settings pertaining to
the sample times. In the Configuration Parameters dialog box, on the
Diagnostics > Sample Time pane:

• Set Source block specifies -1 sample time to error.

• Set Discrete used as continuous to error.

• Set Multitask rate transitionto error.

• Set Single task rate transition to error.

• SetMultitask conditionally executed subsystem to error.

• Set Tasks with equal priority to error.
If the target system does not allow preemption between tasks that
have equal priority, set Tasks with equal priority to none.

• Set Enforce sample times specified by Signal Specification
blocks to error.

3-12

hisl_0044: Configuration Parameters > Diagnostics
> Sample Time

Note The Source block specifies -1 sample time diagnostic detects
when a source block, such as a Sine Wave block, inherits a sample time
(specified as -1). Using inherited sample times for a source block can
result in unpredictable execution rates for the source and downstream
blocks. To prevent incorrect execution sequencing, explicitly specify
the sample times of source blocks.

The Discrete used as continuous diagnostic detects whether the
input for a discrete block, such as the Unit Delay block, is a continuous
signal. Do not use signals with continuous sample times for embedded
real-time software applications.

The Multitask rate transition diagnostic detects invalid rate
transitions between two blocks operating in multitasking mode. Do
not use invalid rate transitions for embedded real-time software
applications.

The Single task rate transition diagnostic detects rate transition
between two blocks operating in single tasking mode. If you intend
to convert to a multitasking model, do not use single tasking rate
transitions for embedded real-time software applications.

The Multitask conditionally executed subsystems diagnostic
detects whether conditionally executed multirate subsystems operate
in multitasking mode. These subsystems can corrupt data or show
nondeterministic behavior in target systems that allow preemption.

The Tasks with equal priority diagnostic detects whether two
asynchronous tasks have equal priority. If the real-time environment
does not allow preemption between tasks that have equal priority, equal
priority is acceptable. However, such tasks can show nondeterministic
behavior in target systems that allow preemption.

The Enforce sample times specified by Signal Specification
blocks diagnostic checks sample time consistency between a Signal
Specification block and the connected destination block. The diagnostic
reports an overspecified sample time. Overspecified sample times can
result in unpredictable execution rates.

Enabling the diagnostics pertaining to the sample times provides
information to detect violations of the previous guidelines.

3-13

hisl_0044: Configuration Parameters > Diagnostics >
Sample Time

Rationale • Simulation

• Verification and Validation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language subset’;

• DO-178B, Section 6.3.1b; ‘High-level requirements are accurate and
consistent’
DO-178B, Section 6.3.2b; ‘Low-level requirements are accurate and
consistent’
DO-178B, Section 6.3.3b;’ Software architecture is consistent’

For more information, see “Diagnostics Pane: Sample Time” in the
Simulink documentation.

Model
Advisor
Checks

By Task > Modeling Standards for DO-178B > “Check
safety-related diagnostic settings for sample time”

Example Not applicable

3-14

hisl_0044: Configuration Parameters > Diagnostics
> Sample Time

Optimizations

hisl_0045: Configuration
Parameters > Optimization
> Implement logic signals as
Boolean data (vs. double)

hisl_0046: Configuration
Parameters > Optimization >
Block reduction

hisl_0047: Configuration
Parameters > Optimization
> Conditional input branch
execution

hisl_0048: Configuration
Parameters > Optimization >
Application lifespan (days)

hisl_0051: Configuration
Parameters > Optimization >
Loop unrolling threshold

hisl_0052: Configuration
Parameters > Optimization >
Data Initialization

hisl_0053: Configuration
Parameters > Optimization >
Remove code from floating-point
to integer conversions that wraps
out-of-range values

hisl_0054: Configuration
Parameters > Optimization >
Remove code that protects against
division arithmetic exceptions

3-15

hisl_0045: Configuration Parameters > Optimization >
Implement logic signals as Boolean data (vs. double)

ID: Title hisl_0045: Configuration Parameters > Optimization > Implement logic
signals as Boolean data (vs. double)

Priority Strongly recommended

Prerequisites Not applicable

Description To support unambiguous behavior when using logical operators,
relational operators, and Combinatorial Logic blocks:

• In the Configuration Parameters dialog box, on the Optimization
pane, select Implement logic signals as Boolean data (vs.
double).

Note Selecting this check box enables Boolean type checking, which
produces an error when blocks that prefer Boolean inputs connect to
double signals. This checking results in generating code that requires
less memory.

Rationale • Simulation

• Verification and Validation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (2) ‘Strongly typed programming language’

• DO-178B, 6.3.1e: High-level requirements conform to standards
DO-178B, 6,3,2e: Low-level requirements conform to standards

• MISRA-C:2004, Rule 12.6

3-16

hisl_0045: Configuration Parameters > Optimization >
Implement logic signals as Boolean data (vs. double)

For more information, see “Implement logic signals as Boolean data (vs.
double)” in the Simulink documentation.

Model
Advisor
Checks

By Task > Modeling Standards for DO-178B > “Check
safety-related optimization settings”

Example Not applicable

3-17

hisl_0046: Configuration Parameters > Optimization >
Block reduction

ID: Title hisl_0046: Configuration Parameters > Optimization > Block reduction

Priority Recommended

Prerequisites Not applicable

Description To support unambiguous presentation of the generated code, and to
support traceability between the model and generated code:

• In the Configuration Parameters dialog box, on the Optimization
pane, consider clearing Block reduction.

Note Selecting Block reduction might optimize blocks out of the
code. This results in requirements with no associated code and violates
traceability objectives.

Rationale • Readability

• Verification and Validation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Clauses 7.4.7.2, 7.4.8.3, and 7.7.2.8 which require to
demonstrate that no unintended functionality has been introduced

• DO-178B, Section 6.3.4e: ‘Source code is traceable to low-level
requirements’

For more information, see “Block reduction” in the Simulink
documentation.

3-18

hisl_0046: Configuration Parameters > Optimization >
Block reduction

Model
Advisor
Checks

By Task > Modeling Standards for DO-178B > “Check
safety-related optimization settings”

Example Not applicable

3-19

hisl_0047: Configuration Parameters > Optimization >
Conditional input branch execution

ID: Title hisl_0047: Configuration Parameters > Optimization > Conditional
input branch execution

Priority Recommended

Prerequisites Not applicable

Description To facilitate structural testing:

• In the Configuration Parameters dialog box, on the Optimization
pane, consider clearing Conditional input branch execution.

Note The Model Coverage tool in the Simulink Verification and
Validation product does not account for this optimization. This
optimization can result in reporting 100% coverage, but for the same
test cases, code coverage might be less than 100%.

Rationale • Simulation

• Verification and Validation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.4 (6) ‘Structure-based testing’

• DO-178B, Section 6.4.4.2: Structural Coverage Analysis: Test
coverage of software structure is achieved

For more information, see “Conditional input branch execution” in the
Simulink documentation.

3-20

hisl_0047: Configuration Parameters > Optimization >
Conditional input branch execution

Model
Advisor
Checks

By Task > Modeling Standards for DO-178B > “Check
safety-related optimization settings”

Example Not applicable

3-21

hisl_0048: Configuration Parameters > Optimization >
Application lifespan (days)

ID: Title hisl_0048: Configuration Parameters > Optimization > Application
lifespan (days)

Priority Strongly Recommended

Prerequisites Not applicable

Description To support the robustness of the behavior of systems that are
continuously running:

• In the Configuration Parameters dialog box, on the Optimization
pane, set Application lifespan (days) to inf.

Note Embedded applications may be running continuously. Do not
assume a limited lifespan for Timers and counters. Setting Application
lifespan (days) to inf guarantees that the simulation time is always
less than the application lifespan.

Rationale • Verification and Validation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.4 (3) ‘Defensive Programming’

• DO-178B, Section 6.3.1g ‘Algorithms are accurate’
DO-178B, Section 6.3.2g ‘Algorithms are accurate’

For more information, see “Application lifespan (days)” in the Simulink
documentation.

See also:

3-22

hisl_0048: Configuration Parameters > Optimization >
Application lifespan (days)

• hisl_0040: Configuration Parameters > Solver >
Simulation time

Model
Advisor
Checks

By Task > Modeling Standards for DO-178B > “Check
safety-related optimization settings”

Example Not applicable

3-23

hisl_0051: Configuration Parameters > Optimization
> Loop unrolling threshold

ID: Title hisl_0051: Configuration Parameters > Optimization > Loop unrolling
threshold

Priority Strongly Recommended

Prerequisites Not applicable

Description To support unambiguous code, set the minimum signal or parameter
width for generating a for loop.

• In the Configuration Parameters dialog box, on the Optimization
pane, set Loop unrolling threshold to a value of 2 or greater.

Note The Loop unrolling threshold parameter specifies the array
size at which the code generator begins to use a for loop, instead of
separate assignment statements, to assign values to the elements of a
signal or parameter array. The default value is 5.

Rationale • Verification and Validation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language Subset’

For more information, see “Loop unrolling threshold” in the Simulink
documentation.

Model
Advisor
Checks

Not applicable

3-24

hisl_0051: Configuration Parameters > Optimization >
Loop unrolling threshold

Example Not applicable

3-25

hisl_0052: Configuration Parameters > Optimization
> Data Initialization

ID: Title hisl_0052: Configuration Parameters > Optimization > Data
initialization

Priority Recommended

Prerequisites Not applicable

Description To support complete definition of data and to ensure that all internal
and external data is initialized to zero, in the Configuration Parameters
dialog box, in the Optimization > Data initialization box:

• Consider clearing Remove root level I/O zero initialization.

• Consider clearing Remove internal state zero initialization.

Note For safety-critical software, explicitly initialize all variables. If
the run-time environment of the target system provides mechanisms to
initialize all I/O and state variables, consider using the initialization of
the target as an alternative to the suggested settings.

Rationale • Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.4 (3) ‘Defensive Programming’

• MISRA-C:2004, Rule 9.1

For more information, see “Remove root level I/O zero initialization”
and “Remove internal data zero initialization” in the Simulink
documentation.

3-26

hisl_0052: Configuration Parameters > Optimization
> Data Initialization

Model
Advisor
Checks

By Task > Modeling Standards for DO-178B > “Check
safety-related optimization settings”

Example Not applicable

3-27

hisl_0053: Configuration Parameters > Optimization >
Remove code from floating-point to integer conversions
that wraps out-of-range values

ID: Title hisl_0053: Configuration Parameters > Optimization > Remove code
from floating-point to integer conversions that wraps out-of-range
values

Priority Recommended

Prerequisites Not applicable

Description To support verifiable code:

• In the Configuration Parameters dialog box, in the
Optimization > Integer and fixed-point section box , consider
selecting Remove code from floating-point to integer
conversions that wraps out-of-range values.

Note For safety-critical software, avoid overflows as opposed to
handling them with special wrapping code. For blocks that have cleared
Saturate on overflow, clearing Remove code from floating-point
to integer conversions that wraps out-of-range values might add
code that wraps out of range values. This code results in unreachable,
for example, untestable, code.

Rationale • Verification and Validation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.4 (3) ‘Defensive Programming’

• MISRA-C:2004, Rule 14.1

3-28

hisl_0053: Configuration Parameters > Optimization
> Remove code from floating-point to integer

conversions that wraps out-of-range values

For more information, see “Remove code from floating-point to
integer conversions that wraps out-of-range values” in the Simulink
documentation.

Model
Advisor
Checks

By Task > Modeling Standards for DO-178B > “Check
safety-related optimization settings”

Example Not applicable

3-29

hisl_0054: Configuration Parameters > Optimization >
Remove code that protects against division arithmetic
exceptions

ID: Title hisl_0054: Configuration Parameters > Optimization > Remove code
that protects against division arithmetic exceptions

Priority Strongly Recommended

Prerequisites Not applicable

Description To support the robustness of the operations:

• In the Configuration Parameters dialog box, in the
Optimization > Integer and fixed-point box , clear Remove
code that protects against division arithmetic exceptions.

Note For safety-critical software, avoid division-by-zero exceptions.
When you clear Remove code that protects against division
arithmetic exceptions, the Real-Time Workshop Embedded Coder
software generates code that guards against division by zero for
fixed-point data.

Rationale • Verification and Validation

• Code Generation

• High Integrity Systems

Notes This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) ‘Language Subset’;
IEC 61508-3 Table A.4 (3) ‘Defensive Programming’

• MISRA-C:2004, Rule 21.1

For more information, see “Remove code that protects against division
arithmetic exceptions” in the Simulink documentation.

3-30

hisl_0054: Configuration Parameters > Optimization >
Remove code that protects against division arithmetic

exceptions

Model
Advisor
Checks

By Task > Modeling Standards for DO-178B > “Check
safety-related optimization settings”

Example Not applicable

3-31

	toc
	Introduction
	Motivation

	Block-Specific Considerations
	Math Operations
	Ports & Subsystems
	Signal Routing
	Logic and Bit Operations

	Configuration Parameter Considerations
	Solver
	Diagnostics
	Optimizations

